ULSAM: Ultra-lightweight subspace attention module for compact convolutional neural networks

ULSAM module design

Abstract

The capability of the self-attention mechanism to model the long-range dependencies has catapulted its deployment in vision models. Unlike convolution operators, self-attention offers infinite receptive field and enables compute- efficient modeling of global dependencies. However, the existing state-of-the-art attention mechanisms incur high compute and/or parameter overheads, and hence unfit for compact convolutional neural networks (CNNs). In this work, we propose a simple yet effective “Ultra-Lightweight Subspace Attention Mechanism” (ULSAM), which infers different attention maps for each feature map subspace. We argue that leaning separate attention maps for each feature subspace enables multi-scale and multi-frequency feature representation, which is more desirable for fine-grained image classification. Our method of subspace attention is orthogonal and complementary to the existing state-of-the- arts attention mechanisms used in vision models. ULSAM is end-to-end trainable and can be deployed as a plug-and- play module in the pre-existing compact CNNs. Notably, our work is the first attempt that uses a subspace attention mechanism to increase the efficiency of compact CNNs. To show the efficacy of ULSAM, we perform experiments with MobileNet-V1 and MobileNet-V2 as backbone architectures on ImageNet-1K and three fine-grained image classification datasets. We achieve ≈13% and ≈25% reduction in both the FLOPs and parameter counts of MobileNet-V2 with a 0.27% and more than 1% improvement in top-1 accuracy on the ImageNet-1K and fine-grained image classification datasets (respectively).

Publication
In WACV 2020
Nandan Kumar Jha
Nandan Kumar Jha
PhD student at NYU CCS

The broader goal is to guide LLM design from first principles, enabling more efficient pre-training, faster (cryptographically secure) private inference, and robust generalization.