
Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial
Activations in Privacy-Preserving Deep Learning

Karthik Garimella, Nandan Kumar Jha, Brandon Reagen
New York University

Introduction Solution: Replace-And-Retrain Results

Solution: Drop-And-Replace
Taylor Approximation Polynomial Regression

Quadratic Imitation Learning (QuaIL)

Key Takeaway
References Low degree polynomial activation functions introduce

escaping activations which lead to unstable inference
and training for deep neural networks.

Replace ReLU with it's Taylor Series expansion around
a = 0:

Higher order derivative terms for ReLU vanish, leaving:

Each neural network collapses to a linear model.

Fit a polynomial function to ReLU and find coefficients
by minimizing mean squared error:

Bayesian Optimization is employed to optimally choose
both a and d.

Non-linear polynomial activation functions introduce
escaping activations during inference.

Quadratic Imitation Learning (QuaIL) iteratively builds and trains a neural network with polynomial activations by
mimicking the intermediate representation values of a trained ReLU network.

An overview of the QuaIL setup for a simple three-layer network. 1) Train a baseline network with the ReLU
activation function. 2) Clone the first layer of the ReLU network, copy over the trained weights, and replace ReLU
with Quad. Minimize the M.S.E. loss between the first-layer intermediate representations of the two networks and
backpropagate through the Quad network. 3-4) Repeat this process for each subsequent layer (while freezing the
previous layers) until the full baseline network is cloned. 5-7) Fine-tune the Quad network by gradually unfreezing
layers and training with standard C.E. Loss.

Approximate Min-Max Normalization (AMM)

QuaIL+AMM achieves reasonable test accuracy up to ResNet-18, but fails to generalize for even deeper networks
due to escaping activations for CIFAR-10. As dataset complexity increases to CIFAR-100 and TinyImageNet, the
generalization gap between the baseline ReLU networks and the QuaIL+AMM networks increases significantly.

The maximum forward activation values after each nonlinear layer at inference time for using Quail+AMM rapidly
increase for deeper networks such as ResNet-18. When using the true minimum and maximum at inference time
(QuaIL+MM), the maximum forward activation values are similar to a baseline ReLU network. Thus a true bounding
function is required at test time to guarantee bounds on pre-activation values.

[1] R Gilad-Bachrach et al, "Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy." ICML 2016
[2] P Mishra et al, "DELPHI: A Cryptographic Inference Service for Neural Networks." USENIX
Security 2020

Privacy concerns in client-server machine learning have given rise to private inference (PI), where neural inference
occurs directly on encrypted inputs [1]:

Linear layers are implemented using a combination of Homomorphic Encryption and Secret-Sharing, while Garbled
Circuits implement non-linear functions such as ReLU (max(0,x)).

In private inference, Garbled Circuits for ReLU dominate latency and storage costs (e.g. ~10 GB storage, ~10 sec
latency for ResNet-18 on CIFAR-10) [2]. In this work, we attempt to replace all ReLUs with low-degree polynomials.

Combining QuaIL and Approx Min-Max Norm

Escaping Activations

Training networks with the Quad activation using only QuaIL quickly leads to escaping activations for even
VGG-16. By combining the QuaIL training method with Approximate Min-Max Normalization, we are able to
guarantee bounds on pre-activation values during training

Even with the QuaIL training procedure, small differences in the intermediate representations between the Quad
and ReLU networks causes activation values to rapidly increase for deeper networks, leading to unstable training.
This illustrates the need to bound pre-activation values during training time.

Before each Quad activation, an Approx Min-Max Norm layer is placed in order to bound pre-activation values. This
mitigates the escaping activation problem at training time. During training, approximations of both the minimums
and maximums are calculated and stored using a weighted moving average of the true minimums and
maximums (we use a smoothing factor of 1/10). When performing inference, these stored approximations are then
used to perform approximate normalization.

