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Introduction Solution: Replace-And-Retrain Results

Privacy concerns in client-server machine learning have given rise to private inference (PI), where neural inference Qu ad ratic Im itation Learning (QuaIL) Comb| ning Qual L and ApprOX Min-M dX NOrm

occurs directly on encrypted inputs [1]:

Quadratic Imitation Learning (QuallL) iteratively builds and trains a neural network with polynomial activations by

Client (End-User) Server (Model Host) mimicking the intermediate representation values of a trained ReLU network. Training networks with the Quad activation using only QualL quickly leads to escaping activations for even
e L VGG-16. By combining the QuallL training method with Approximate Min-Max Normalization, we are able to
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1 1 1 _ _ i = QualL+AMM achieves reasonable test accuracy up to ResNet-18, but fails to generalize for even deeper networks

due to escaping activations for CIFAR-10. As dataset complexity increases to CIFAR-100 and TinylmageNet, the
An overview of the QualL setup for a simple three-layer network. 1) Train a baseline network with the ReLU generalization gap between the baseline ReLU networks and the QualL+AMM networks increases significantly.
activation function. 2) Clone the first layer of the ReLU network, copy over the trained weights, and replace RelL.U

- with Quad. Minimize the M.S.E. loss between the first-layer intermediate representations of the two networks and
Secret Sharlng (Cheap) backpropagate through the Quad network. 3-4) Repeat this process for each subsequent layer (while freezing the Esca in ACtivations
previous layers) until the full baseline network is cloned. 5-7) Fine-tune the Quad network by gradually unfreezing p g

layers and training with standard C.E. Loss.

In private inference, Garbled Circuits for ReLU dominate latency and storage costs (e.g. ~10 GB storage, ~10 sec

latency for ResNet-18 on CIFAR-10) [2]. In this work, we attempt to replace all ReLUs with low-degree polynomials. 10%
. - - . . —e— QualL+AMM
Approximate Min-Max Normalization (AMM) L= QuAIL+MM
1072 - =
S —e— Baseline RelLU
Even with the QualL training procedure, small differences in the intermediate representations between the Quad ;o 1018 4
and RelLU networks causes activation values to rapidly increase for deeper networks, leading to unstable training. %
S I t' = D A d R I This illustrates the need to bound pre-activation values during training time. = W
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Replace RelLU with it's Taylor Series expansion around Fit a polynomial function to ReLU and find coefficients Tl oL N1 & ¢ ApproxMinMaxNorm
a=0: by minimizing mean squared error: RelLU ¢ The maximum forward activation values after each nonlinear layer at inference time for using Quail+AMM rapidly
= ") (a) n 5 ) p increase for deeper networks such as ResNet-18. When using the true minimum and maximum at inference time
f(z) ~ Z - (z —a) E(#) = /“ (Z wyxd —ReLU(x) | dx s (QualL+MM), the maximum forward activation values are similar to a baseline ReLU network. Thus a true bounding
n=0 -a \‘20 function is required at test time to guarantee bounds on pre-activation values.
Higher order derivative terms for ReLU vanish, leaving: Before each Quad activation, an Approx Min-Max Norm layer is placed in order to bound pre-activation values. This
Bayesian Optimization is employed to optimally choose mitigates the escaping activation problem at training time. During training, approximations of both the minimums
f(z) = 13; both a and d. and maximums are calculated and stored using a weighted moving average of the true minimums and
2 Polynomial Aporoximation for ReLU maximums (we use a smoothing factor of 1/10). When performing inference, these stored approximations are then
Taylor Approximation for ReLU 10 used to perform approximate normalization.
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Low degree polynomial activation functions introduce
escaping activations which lead to unstable inference
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