

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Data-type Aware Arithmetic Intensity for Deep Neural Networks

Nandan Kumar Jha¹, Sparsh Mittal¹, Sasikanth Avancha²

¹Department of Computer Science and Engineering, IIT Hyderabad, India ² Parallel Computing Lab, Intel Corporation

INTRODUCTION AND MOTIVATION

• Energy consumption of DNNs depend on computational complexity (#MACs) and energy efficiency of each MAC operation, which in turn depends on **data movement**.

CHALLENGES

• DNN is a **special** type of workload which has computation phases with *radically* different computational intensity (OPs/Bytes). For example, depthwise, pointwise, groupwise convolution.

Convolution	Arithmetic intensity (AI)	AI_r
Standard	$\frac{M \times N \times S_k^2 \times S_o^2}{M \times N \times S_k^2 + (M+N) \times S_o^2}$	1.00
Pointwise	$\frac{M \times N \times S_o^2}{M \times N + (M+N) \times S_o^2}$	0.24
Group	$\frac{M \times N \times S_k^2 \times S_o^2}{M \times N \times S_k^2 + g \times (M+N) \times S_o^2}$	0.45
Depthwise	$\frac{M \times S_k^2 \times S_o^2}{M \times S_k^2 + (M+M) \times S_o^2}$	0.01

$\overline{9}$	Layer-wise arithmetic	intensity MobileNetV1
		MobileNetV2

PROPOSED METHOD

$$\frac{W+A}{2} \ge \frac{2 \times W \times A}{W+A} \implies \frac{2 \times M_c}{W+A} \le \frac{M_c \times (W+A)}{2 \times W \times A} \implies \frac{M_c}{W+A} \le \frac{1}{4} \times \left[\frac{M_c}{A} + \frac{M_c}{W}\right]$$
$$\implies AI_c \le \frac{1}{4} \times \left[\text{ActivationReuse} + \text{WeightReuse}\right] \text{ Now, } DI = \frac{1}{4} \times \left[\alpha \times \text{ActivationReuse} + (1-\alpha) \times \text{WeightReuse}\right]$$

DISCUSSION

GPU	X	Y	r = correlation (<i>X</i> , <i>Y</i>)
P4000	AI _c	Energy efficiency	0.52
	DI (Ours)	Energy efficiency	0.83
P100	AI _c	Energy efficiency	0.23
	DI(Ours)	Energy efficiency	0.64

Relative disparity (d_f) between AI_c and DI

$$d_f = \left(\frac{AI_c - DI}{AI_c}\right) \times 100 = 75 - 6.25 \times \left[\frac{A}{W} + 3 \times \frac{W}{A}\right]$$

	Case 1: $A \ll W$	Case 2: $A \approx W$	Case 3: $A \gg W$
AI_{c}	$\approx M_c/W$	$\approx 0.5 \times M_c/A$	$\approx M_c/A$
DI	$\approx 0.2 \times M_c/A$	$\approx 0.25 \times M_c/A$	$\approx 0.06 \times M_c/W$
d_f	$\approx 75 - 18.75 \times \frac{W}{A}$	≈ 50	$\approx 75 - 6.25 \times \frac{A}{W}$

$DI = \frac{1}{4} \times [0.8 \times \text{ActivationReuse} + 0.2 \times \text{WeightReuse}]$

EXPERIMENTAL RESULTS (1)

CONCLUSION AND FUTURE WORK

- AI_c is a representative of energy-efficiency for mainly DNNs with $A \approx W$.
- AI_c fails to estimate the data reuse in DNNs when $|d_f|$ is high.
- *DI* is a better representative of energy-efficiency in DNNs.
- Evaluation of *DI* on DNN accelerators and FPGA.

CONTACT

cs17mtech11010 [at] iith [dot] ac [dot] in