E2GC: Energy-efficient Group Convolution in Deep Neural Networks

<u>Nandan Kumar Jha</u>, Rajat Saini, Subhrajit Nag, Sparsh Mittal {cs17mtech11010, cs17mtech11002, cs17resch11006, sparsh}@iith.ac.in

Department of Computer Science and Engineering Indian Institute of Technology Hyderabad

The 33rd International Conference on VLSI Design & The 19th International Conference on Embedded Design

January 6, 2020

Outline

- Introduction: challenges and motivation
- Previous works: finding the gap
- Proposed approach: E2GC
- Experimental results: E2GC vs. FgGC
- Predictive performance: A discussion
- Conclusion

Challenges: DNNs and Energy Consumption (training)

Higher predictive performance of DNNs comes at the cost of higher computational complexity and large model size.

Challenges: DNNs and Energy Consumption (training)

Higher predictive performance of DNNs comes at the cost of higher computational complexity and large model size.

- Deeper and wider DNNs: (# FLOPs (~ 10⁹), # Parameters (~ 10⁶))
 - ResNet-101 (7.6B, 44.5M), ResNeXt-50 (4.2B, 25M)

Challenges: DNNs and Energy Consumption (training)

Higher predictive performance of DNNs comes at the cost of higher computational complexity and large model size.

- Deeper and wider DNNs: (# FLOPs (~ 10⁹), # Parameters (~ 10⁶))
 - ResNet-101 (7.6B, 44.5M), ResNeXt-50 (4.2B, 25M)

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Source: MIT Technology Review (June 6, 2019)

Challenge: High power consumption.

"Training a single model can emit as much carbon as **five** cars in their lifetimes"

VLSI Design 2020

IIT Hyderabad

Challenges: DNNs and Energy Consumption (inference)

	Deployed IOT	Wearables	Mobile Phones	Surveillance
Example Application Processor	Ti MSP430	Snapdragon Wear, Apple S3, Exynos 7 dual	Snapdragon 845, Apple A11, Exynos 9	Qualcomm QC605
Power Budget	50-1000 μW	1-2 W	3-5W	4-7W
Typical Battery	Energy Harvest / Li-Ion 5-300 mWh	Li-lon 0.9 - 1.7 Wh	Li/Polymer-lon 10-20 Wh	Li-lon / Alkaline 5-40 Wh

Source: Kurt Keutzer (DeepScale AI)

Challenge: Limited battery life and tight power budget.

Challenges: DNNs and Energy Consumption (inference)

	Deployed IOT	Wearables	Mobile Phones	Surveillance
Example Application Processor	Ti MSP430	Snapdragon Wear, Apple S3, Exynos 7 dual	Snapdragon 845, Apple A11, Exynos 9	Qualcomm QC605
Power Budget	50-1000 μW	1-2 W	3-5W	4-7W
Typical Battery	Energy Harvest / Li-Ion Li-Ion 5-300 mWh 0.9 - 1.7 Wh		Li/Polymer-lon 10-20 Wh	Li-lon / Alkaline 5-40 Wh

Challenge: Limited battery life and tight power budget.

Source: Kurt Keutzer (DeepScale AI)

"Al Algorithm will be measured by the amount of intelligence they provide per killowatthour. Broad economic viability requires energy-efficiency"

- Max Welling, "Intelligence per Killowatthour", ICML invited talk, 2018

Solution?

э

Solution? Compact DNNs

< 4 ∰ > <

э

Compact DNN Techniques

- Pruning
- Knowledge Distillation
- Tensor Factorization
- Low rank filters $(1 \times 3 \text{ and } 3 \times 1 \text{ filters})$
- Group Convolution
- Depthwise Convolution

Compact DNN Techniques

- Pruning
- Knowledge Distillation
- Tensor Factorization
- Low rank filters $(1 \times 3 \text{ and } 3 \times 1 \text{ filters})$
- Group Convolution
- Depthwise Convolution

Group convolution

Background: Types of convolution

Figure: (a) Standard conv, (b) Group conv (GCconv), (c) Depthwise conv (DWConv), (d) GConv followed by pointwise conv.

Quantity (symbol)	Expression	Quantity (symbol)
# MACs (M_c)	$n \times m \times d_k^2 \times h \times w$	# input fmaps (m)
# parameters (P)	$n \times m \times d_k^2$	# output fmaps (n)
# activations (A)	$(n+m) \times h \times w$	# groups in GConv (g)
Arith. intensity (AI)	$M_c/(P+A)$	Energy per frame (EPF)
# channels in a group (G)	m/g	Group size in GConv (G)

Why group convolution?

- Enables compute and parameter efficient convolution
 - Only a group of ifmaps $\left(\frac{m}{g}\right)$ interacts with each ofmap.
 - Parameters and FLOPs (in each group) reduces by a factor of g^2 .

M _c	Р	A (ifmaps + ofmaps)
$\frac{n \times m \times h \times w \times d_k^2}{g}$	$\frac{n \times m \times d_k^2}{g}$	$(n+m) \times h \times w$

Why group convolution?

- Enables compute and parameter efficient convolution
 - Only a group of ifmaps $\left(\frac{m}{g}\right)$ interacts with each ofmap.
 - Parameters and FLOPs (in each group) reduces by a factor of g^2 .

M _c	Р	A (ifmaps + ofmaps)
$\frac{n \times m \times h \times w \times d_k^2}{g}$	$\frac{n \times m \times d_k^2}{g}$	$(n+m) \times h \times w$

• Sparsity and Redundancy:

- GConv breaks the fully connected pattern between ifmaps and ofmaps and reduces the redundancy in channel extent.
- GConv acts as coarse-grained and structured channel pruning.

Why group convolution?

- Enables compute and parameter efficient convolution
 - Only a group of ifmaps $\left(\frac{m}{g}\right)$ interacts with each ofmap.
 - Parameters and FLOPs (in each group) reduces by a factor of g^2 .

M _c	Р	A (ifmaps + ofmaps)
$\frac{n \times m \times h \times w \times d_k^2}{g}$	$\frac{n \times m \times d_k^2}{g}$	$(n+m) \times h \times w$

• Sparsity and Redundancy:

- GConv breaks the fully connected pattern between ifmaps and ofmaps and reduces the redundancy in channel extent.
- GConv acts as coarse-grained and structured channel pruning.

Thus, GConv achieves better compute efficiency along with structured sparsity, which enables better generalization and better hardware acceleration.

Previous Work on GConv

Interleaved (comprised of primary and secondary) GConv

IGCNet-V1 [ICCV'17], IGCNet-V2 [CVPR'18], IGCNet-V3 [BMVC'18].

GConv with fixed g (FgGC module)

AlexNet (g=2) [NIPS'12], ResNeXt (g=32) [CVPR'17], ShuffleNet-V1 (g=3) [CVPR'18].

Depthwise convolution: A special case of GConv

MobileNet-V1/V2 [CVPR'18], ShuffleNet-V1/V2 [ECCV'18], Xception-Net [CVPR'17], ChannelNet [NeurIPS'18].

• CondenseNet [CVPR'18]: learned GConv.

VLSI Design 2020

Key Shortcoming

Overlooked the interplay of g with the number of computation and data reuse which results in energy-inefficient design of DNN.

Key Shortcoming

Overlooked the interplay of g with the number of computation and data reuse which results in energy-inefficient design of DNN.

M _c	AI
$n \times m \times h \times w \times d_k^2$	$n \times m \times h \times w \times d_k^2$
g	$\overline{n \times m \times d_k^2 + \mathbf{g} \times (n+m) \times h \times w}$

Key Shortcoming

Overlooked the interplay of g with the number of computation and data reuse which results in energy-inefficient design of DNN.

VLSI Design 2020

Optimal Energy Efficiency

Figure: Energy per frame for MobileNet-V1 (a, b) and ResNeXt-50 (c, d).

Optimal Energy Efficiency

Figure: Energy per frame for MobileNet-V1 (a, b) and ResNeXt-50 (c, d).

Observation: At lower g computational cost is consequential while at higher g effect of lower data reuse outweigh the benefit of reduced computations.

VLSI Design 202

Balancing computations and data reuse

$$M_c \times \left(\frac{\alpha}{AI}\right)^{\beta} = const;$$
 where $AI = \frac{M_c}{A+P}$
 $\implies (M_c)^{1-\beta} \times (A+P)^{\beta} = const \times \alpha^{-\beta}$

 α and β are two platform-dependent variables such that $\alpha, \beta \in (0, 1]$.

 α accounts for the memory-hierarchy and β for the disparity in energy consumption. $(M_{\alpha})^{1-\beta} \times P^{\beta} = \gamma \ (\gamma = const \times \alpha^{-\beta})$

$$\implies \left(\frac{m \times n \times h \times w \times d_k^2}{g}\right)^{1-\beta} \times \left(\frac{m \times n \times d_k^2}{g}\right)^{\beta} = \gamma$$
$$\implies g = \frac{m \times n \times d_k^2 \times (h \times w)^{1-\beta}}{\gamma} \implies g = f(m, n, d_k, h, w) \qquad (1)$$

Balancing computations and data reuse

$$M_c \times \left(\frac{\alpha}{AI}\right)^{\beta} = const;$$
 where $AI = \frac{M_c}{A+P}$
 $\implies (M_c)^{1-\beta} \times (A+P)^{\beta} = const \times \alpha^{-\beta}$

 α and β are two platform-dependent variables such that $\alpha, \beta \in (0, 1]$.

 α accounts for the memory-hierarchy $% \beta$ and β for the disparity in energy consumption.

$$(M_c)^{1-\beta} \times P^{\beta} = \gamma \ (\gamma = const \times \alpha^{-\beta})$$

$$\implies \left(\frac{m \times n \times h \times w \times d_k^2}{g}\right)^{1-\beta} \times \left(\frac{m \times n \times d_k^2}{g}\right)^{\beta} = \gamma$$
$$\implies g = \frac{m \times n \times d_k^2 \times (h \times w)^{1-\beta}}{\gamma} \implies g = f(m, n, d_k, h, w) \qquad (1)$$

Takeaway: Keeping "**number of groups** (g)" constant (FgGC module) in DNNs is *incongruous* with energy-efficiency.

VLSI Design 2020

(日) (同) (三) (三)

E2GC module: Balancing computations and data reuse

$$g \propto m \times n \times (h \times w)^{(1-\beta)}$$

Let $h = w = d_f$ and $\beta = 0.5$ (Since, $\beta \in (0,1]$)
 $\implies g \propto m \times n \times d_f$ (2)

To avoid representational bottleneck in DNNs, $\frac{d_k}{2}$ and 2n occurs in one block.

Hence,
$$g \propto m \implies G = \eta$$
 (since, $G = \frac{m}{g}$) (3)

E2GC module: Balancing computations and data reuse

$$g \propto m \times n \times (h \times w)^{(1-\beta)}$$

Let $h = w = d_f$ and $\beta = 0.5$ (Since, $\beta \in (0,1]$)
 $\implies g \propto m \times n \times d_f$ (2)

To avoid representational bottleneck in DNNs, $\frac{d_k}{2}$ and 2n occurs in one block.

Hence,
$$g \propto m \implies G = \eta$$
 (since, $G = \frac{m}{g}$) (3)

Takeaway: Keeping "**number of channels (***G***)**" constant in the groups of GConv of DNNs is **congruous** with energy-efficiency.

E2GC vs. FgGC

Figure: (a) Proposed E2GC module where G remain constant in all the conv layers (b) Conventional FgGC module where g remains same in all the conv layers.

Experimental Setup

Table: GPU specifications used in our experiments

GPU # core	L2 size	Peak bandwidth	Peak Throughput	CMR
P100 3584	4 MB	549 GB/s	9.3 TFLOPS	16.94 FLOPs/Byte
P4000 1792	2 MB	243 GB/s	5.2 TFLOPS	21.4 FLOPs/Byte

Energy per frame (EPF) =
$$\frac{(\text{average power}) \times (FP_t + BP_t)}{(\text{batch size})}$$

- FP_t and BP_t are average of 100 iterations.
- Power measurement: nvidia-smi
- Deep learning framework: Caffe and PyTorch

Results: MobileNet-V1 with E2GC module

Table: Energy per frame (*EPF*) comparison of MobileNet-V1 with E2GC/FgGC module.

MahilaNat V/1	D_{arams} (v10 ⁶)	MAC_{2} (v10 ⁶)	EPF c	n P100	(millijoule)	EPF c	n P400	0 (millijoule)
wobliewet-v1	Params (×10)	MACS (×10)	B=1	B=4	B=16	B=1	B=4	B=16
E2GC (G=1)	4.20	568.74	689	630	613	1607	1448	1373
E2GC ($G=2$)	4.25	586.13	538	482	450	1169	1014	983
E2GC (G=4)	4.34	620.90	421	357	330	1005	846	816
E2GC (G=8)	4.52	690.44	373	316	302	780	630	592
E2GC (G=16)	4.87	829.53	370	284	277	689	551	507
E2GC (G=32)	5.59	1107.71	363	281	265	648	501	480
FgGC (g=2)	16.72	2690.06	476	388	383	785	673	631
FgGC (g=4)	10.44	1620.71	402	327	312	706	572	551
FgGC (g=8)	7.30	1086.03	372	297	281	704	561	550
FgGC (g=16)	5.73	818.69	384	308	292	719	598	591
FgGC (g=32)	4.95	685.02	418	334	321	811	698	647

MobileNet-V1 with E2GC module is 10.8% and 8.7% more energy efficient and parameter efficient (respectively) than MobileNet-V1 with F2GC module (#MACs \approx 690M)

Results: ResNeXt-50 with E2GC module

Table: Energy per frame (EPF) comparison of ResNeXt-50 with E2GC/FgGC module.

PeaNeV+ F0	$Parame (\times 10^6)$	MAC_{2} (v109)	EPF o	n P100	(millijoule)	EPF o	n P400	0 (millijoule)
ResileAL-50	Farams (×10°)	MACS (×10°)	B=1	B=4	B=16	B=1	B=4	B=16
E2GC (G=1)	23.61	4.02	2185	1248	712	5780	2371	1434
E2GC (G=2)	23.68	4.05	1921	1000	678	4661	2109	1347
E2GC ($G=4$)	23.82	4.10	1476	804	667	3431	1674	1292
E2GC (G=8)	24.09	4.20	1162	742	631	2337	1318	1152
E2GC (G=16)	24.63	4.40	1132	722	619	2220	1251	1080
E2GC (G=32)	25.72	4.80	1088	694	597	2063	1189	1049
FgGC (g=2)	46.18	7.70	1485	878	695	2702	1572	1276
FgGC (g=4)	34.86	5.85	1241	761	638	2181	1391	1155
FgGC (g=8)	29.20	4.92	1142	730	612	2055	1302	1129
FgGC (g=16)	26.37	4.46	1131	722	624	2106	1295	1117
FgGC (g=32)	24.96	4.23	1204	766	687	2310	1356	1200

ResNeXt-50 with E2GC module is 4% and 3.5% more energy-efficient and parameterefficient (respectively) than **ResNeXt-50 with F2GC** module ($\#MACs \approx 4.2B$) \bigcirc

Predictive performance of a network

- GConv acts as *implicit* regularizer.
 - Structured **DropConnect** [ICML'13].
 - DropBlock [NeurIPS'18] .
- Changing G affects regularization.
 - Lower $G \implies$ stronger regularization.
 - Higher $G \implies$ weaker regularization.

Predictive performance of a network

- GConv acts as *implicit* regularizer.
 - Structured **DropConnect** [ICML'13].
 - DropBlock [NeurIPS'18] .
- Changing G affects regularization.
 - Lower $G \implies$ stronger regularization.
 - Higher $G \implies$ weaker regularization.

- Changing G alters the representational power of network.
 - Higher *G* captures more variations of complex

concepts.

Predictive performance of a network

- GConv acts as *implicit* regularizer.
 - Structured **DropConnect** [ICML'13].
 - DropBlock [NeurIPS'18] .
- Changing G affects regularization.
 - Lower $G \implies$ stronger regularization.
 - Higher $G \implies$ weaker regularization.

- Changing G alters the representational power of network.
 - Higher *G* captures more variations of complex
 - concepts.

Key observation: Changing *G* enables a trade-off between representational power and generalization ability of network.

Results: Predictive performance

Table: Top-1 accuracy on ImageNet-1k with E2GC module.

E2GC module	Params (×10 ⁶)	MACs (×10 ⁶)	ImageNet-1K (Top-1 %)
MobileNet-V1 ($G=1$)	4.20	568.74	70.65
MobileNet-V1 ($G=2$)	4.25	586.13	72.76
MobileNet-V1 ($G=4$)	4.34	620.90	72.24
MobileNet-V1 ($G=8$)	4.52	690.44	71.85
MobileNet-V1 ($G=16$)	4.87	829.53	71.18
MobileNet-V1 ($G=32$)	5.59	1107.71	72.76
ResNeXt-50 ($G=1$)	23.61	4.02	74.43
ResNeXt-50 ($G=2$)	23.68	4.05	77.04
ResNeXt-50 ($G=4$)	23.82	4.10	77.22
ResNeXt-50 ($G=8$)	24.09	4.20	77.60
ResNeXt-50 ($G=16$)	24.63	4.40	77.64
ResNeXt-50 ($G=32$)	25.72	4.80	77.45

Results: Predictive performance

Table: Top-1 accuracy on ImageNet-1k with E2GC module.

E2GC module	Params (×10 ⁶)	MACs (×10 ⁶)	ImageNet-1K (Top-1 %)
MobileNet-V1 ($G=1$)	4.20	568.74	70.65
MobileNet-V1 ($G=2$)	4.25	586.13	72.76
MobileNet-V1 ($G=4$)	4.34	620.90	72.24
MobileNet-V1 ($G=8$)	4.52	690.44	71.85
MobileNet-V1 ($G=16$)	4.87	829.53	71.18
MobileNet-V1 ($G=32$)	5.59	1107.71	72.76
ResNeXt-50 (G=1)	23.61	4.02	74.43
ResNeXt-50 ($G=2$)	23.68	4.05	77.04
ResNeXt-50 ($G=4$)	23.82	4.10	77.22
ResNeXt-50 ($G=8$)	24.09	4.20	77.60
ResNeXt-50 (G=16)	24.63	4.40	77.64
ResNeXt-50 (G=32)	25.72	4.80	77.45

Takeaway: Depthwise convolution has low representational power and increasing G enables network to extract more semantic information.

Conclusion

GConv enables a trade-off between computational cost and memory cost; between representational power and generalization ability.

- Fixing g in layers of a DNNs is *not amenable* for higher energy efficiency.
 - Selection of g/G should balance the computation with data reuse.
- Depthwise convolution inefficient in extracting semantic features.
 - Increases G helps in achieving better representational power.

Thanks for your attention..!!!

Thanks for your attention..!!!

Q & A?

code available at

https://github.com/iithcandle/E2GC-release

Additional slide: 1

MobileNet V/1 Parame (v10 ⁶)		MAC ~ (106)	EPF on P100 (millijoule)			EPF on P4000 (millijoule)			Accuracy (Top-1 %)	
WODHENEL-V1	VI Params (×10°)	MACS (×10°)	B=1	B=4	B=16	B=1	B=4	B=16	ImageNet-1K	Food-101
E2GC (G=1)	4.20	568.74	689	630	613	1607	1448	1373	70.65	79.96
E2GC (G=2)	4.25	586.13	538	482	450	1169	1014	983	72.76	80.48
E2GC (G=4)	4.34	620.90	421	357	330	1005	846	816	72.24	80.23
E2GC (G=8)	4.52	690.44	373	316	302	780	630	592	71.85	80.03
E2GC (G=16)	4.87	829.53	370	284	277	689	551	507	71.18	79.79
E2GC (G=32)	5.59	1107.71	363	281	265	648	501	480	72.76	79.69
FgGC (g=2)	16.72	2690.06	476	388	383	785	673	631	74.43	78.60
FgGC $(g=4)$	10.44	1620.71	402	327	312	706	572	551	73.59	79.06
FgGC (g=8)	7.30	1086.03	372	297	281	704	561	550	73.34	79.60
FgGC (g=16)	5.73	818.69	384	308	292	719	598	591	72.60	80.03
FgGC (g=32)	4.95	685.02	418	334	321	811	698	647	72.20	80.13

Image: A image: A

-

æ

Additional slide: 2

ResNeXt 50 Params (×10 ⁶)		MACe (v109)	EPF on P100 (millijoule)			EPF on P4000 (millijoule)			Accuracy (Top-1 %)	
Resident-50 Faranis (*10.)	WACS (X10)	B=1	B=4	B=16	B=1	B=4	B=16	ImageNet-1K	Food-101	
E2GC ($G=1$)	23.61	4.02	2185	1248	712	5780	2371	1434	74.43	82.62
E2GC ($G=2$)	23.68	4.05	1921	1000	678	4661	2109	1347	77.04	82.78
E2GC ($G=4$)	23.82	4.10	1476	804	667	3431	1674	1292	77.22	82.72
E2GC (G=8)	24.09	4.20	1162	742	631	2337	1318	1152	77.60	82.10
E2GC (G=16)	24.63	4.40	1132	722	619	2220	1251	1080	77.64	82.03
E2GC (G=32)	25.72	4.80	1088	694	597	2063	1189	1049	77.45	81.46
FgGC (g=2)	46.18	7.70	1485	878	695	2702	1572	1276	77.58	78.03
FgGC(g=4)	34.86	5.85	1241	761	638	2181	1391	1155	77.62	78.16
FgGC(g=8)	29.20	4.92	1142	730	612	2055	1302	1129	77.64	78.88
FgGC (g=16)	26.37	4.46	1131	722	624	2106	1295	1117	77.72	80.00
FgGC (g=32)	24.96	4.23	1204	766	687	2310	1356	1200	77.80	80.05

э.

-

Image: A image: A

æ

Additional slide: 3

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

 Andrew G. Howard
 Menglong Zhu
 Bo Chen
 Dmitry Kalenichenko

 Weijun Wang
 Tobias Weyand
 Marco Andreetto
 Hartwig Adam

Google Inc.

{howarda,menglong,bochen,dkalenichenko,weijunw,weyand,anm,hadam}@google.com

4.1. Model Choices

First we show results for MobileNet with depthwise separable convolutions compared to a model built with full convolutions. In Table 4 we see that using depthwise separable convolutions compared to full convolutions only reduces accuracy by 1% on ImageNet was saving tremendously on mult-adds and parameters.

We next show results comparing thinner models with width multiplier to shallower models using less layers. To make MobileNet shallower, the 5 layers of separable filters with feature size $14 \times 14 \times 512$ in Table 1 are removed. Table 5 shows that at similar computation and number of parameters, that making MobileNets thinner is 3% better than making them shallower.

Table 4. Depthwise Separable vs Full Convolution MobileNet								
Model	ImageNet	Million	Million					
	Accuracy	Mult-Adds	Parameters					
Conv MobileNet	71.7%	4866	29.3					
MobileNet	70.6%	569	4.2					