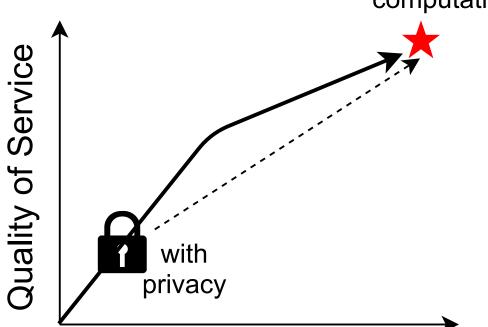


Motivation

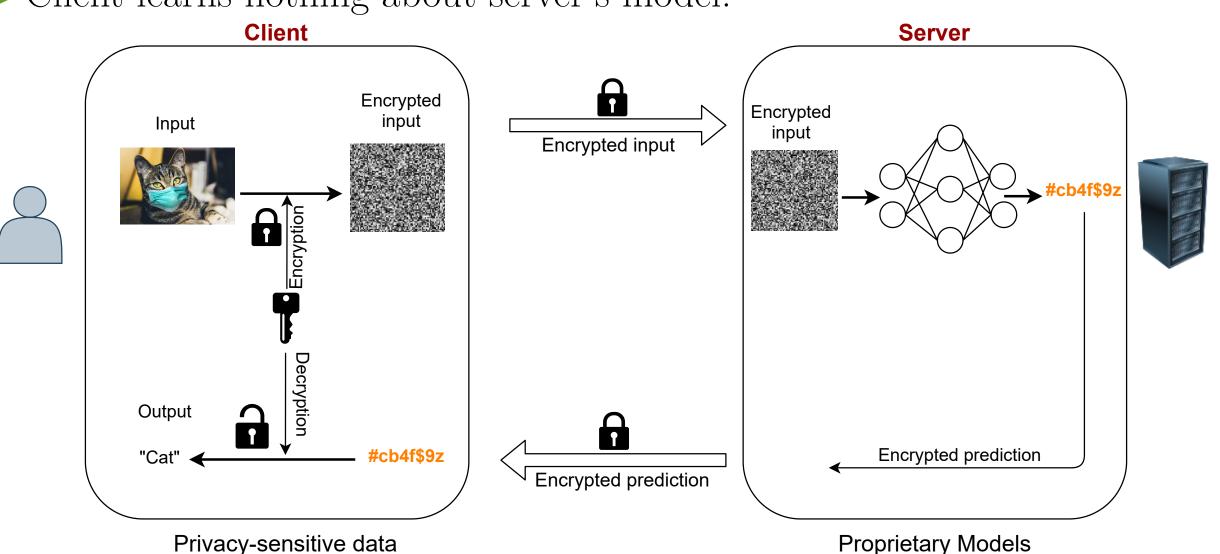
- Deep learning as a service (DLaaS) gives rise to privacy concerns: ► Client's input are privacy-sensitive and server's models are IP of service provider. \Box There is an inherent tradeoff between privacy and QoS: ► Users sacrifice the QoS for higher privacy guarantee.
- □ Privacy-preserving computation breaks the QoS-privacy tradeoff:
- ► Users can get high QoS with higher privacy guarantee.



Amount of Data

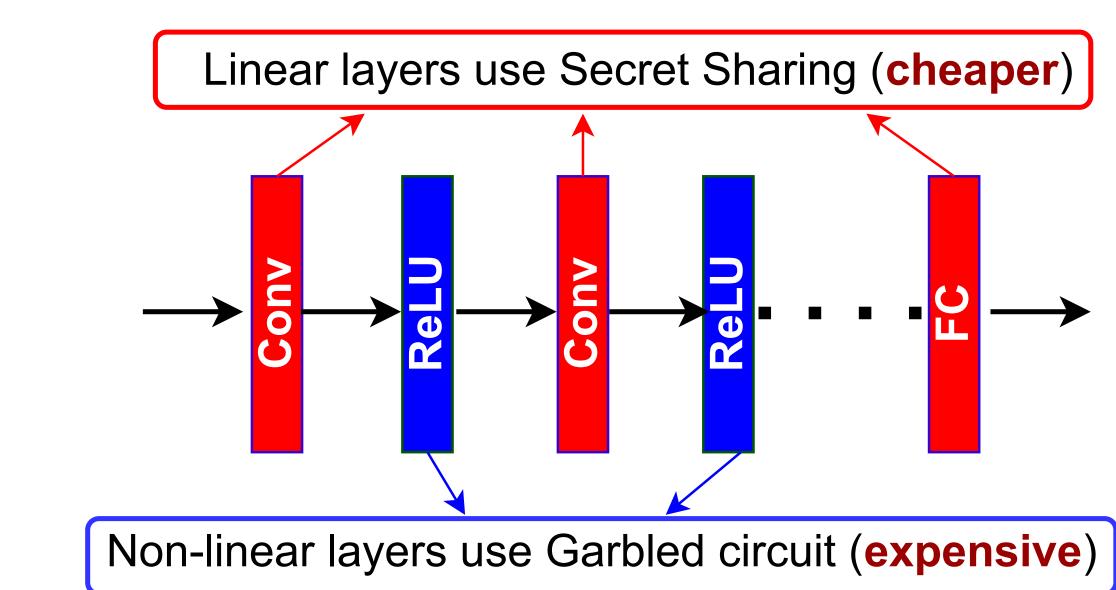
Private Inference

- In private inference, neural network computation is performed directly on encrypted data such that:
- ► Server learns nothing about client's input.
- ► Client learns nothing about server's model.



Source of slowdown in Private Inference

 \Box In private inference, linear and nonlinear layers use different cryptographic protocols.



- \Box Inverted operator cost in private inference:
- \triangleright ReLUs are 3 to 4 orders of magnitude slower than convolution [1].
- ▶ ReLUs contribute $\sim 99\%$ in total online latency [2].

DeepReDuce: ReLU Reduction for Fast Private Inference Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, Brandon Reagen

DeepReDuce

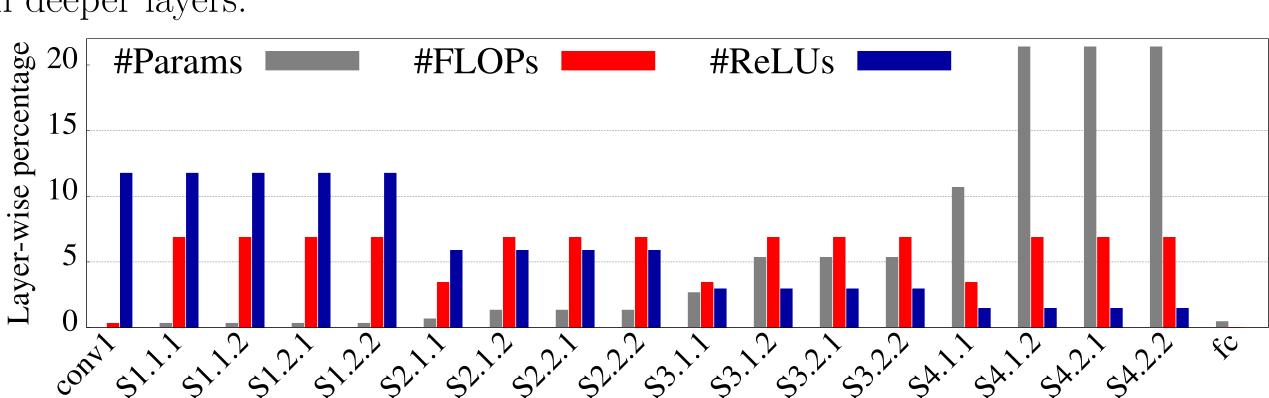
with privacy-preserving computation

ReLUs in neural networks exhibit heterogeneity in terms of their impact on accuracy.

► ReLUs' Heterogeneity

□ Layer-wise distribution of ReLU

► Usually initial layers have higher #ReLUs and layer-wise ReLU count decreases in deeper layers.



ReLUs' criticality for network's accuracy. ▶ ReLUs in middle layers are more critical than ReLUs in initial and last layers.

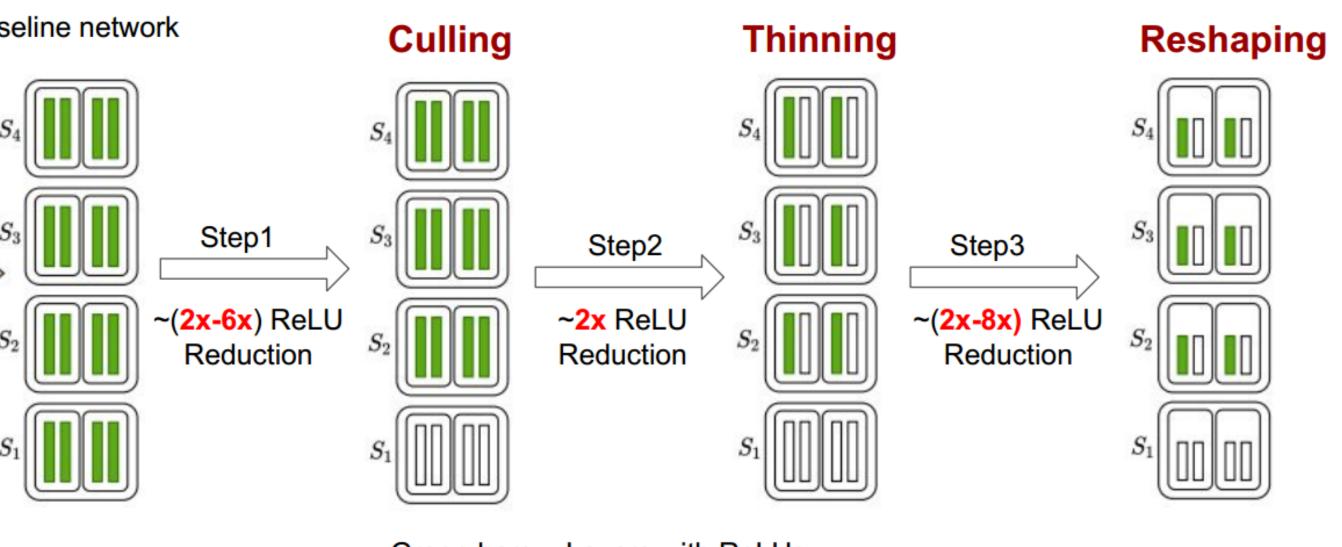
Models	Metrics	No ReLUs	Conv1	S_1	S_2	S_3	S_4
	#ReLUs	0	66K	262K	131K	66K	33K
ResNet18	W/o KD ($\%$)	18.49	46.22	61.93	67.63	67.41	58.90
	W/ KD (%)	18.34	45.07	59.85	68.79	69.92	63.16
	#ReLUs	0	66K	393K	262K	197K	49K
ResNet34	W/o $KD(\%)$	18.16	45.42	60.77	69.47	70.04	57.44
	W/ $KD(\%)$	18.07	45.13	62.88	70.93	72.61	64.23

DeepReDuce achieves ReLU saving with minimal impact on accuracy by dropping the less critical while preserving most critical ReLUs.

► ReLU optimization steps in DeepReDuce

- □ ReLU Culling
- ► Given a baseline full ReLU network, it first drops/removes ReLUs from least critical stage.
- \Box ReLU Thinning
- ▶ Drops ReLUs from the alternate layers in the remaining non-Culled stages.
- □ ReLU Reshaping
- ▶ Employ conventional channel and/or feature map resolution scaling in all the layers of network to achieve very low ReLU count.

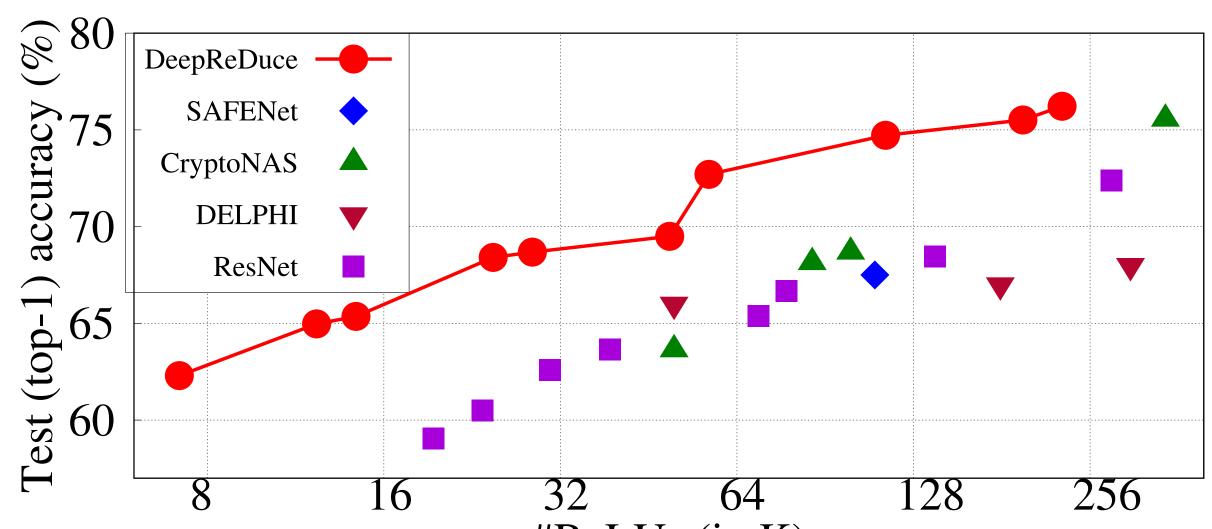
Baseline network



Green bars = Layers with ReLUs White bars = Layers without ReLUs

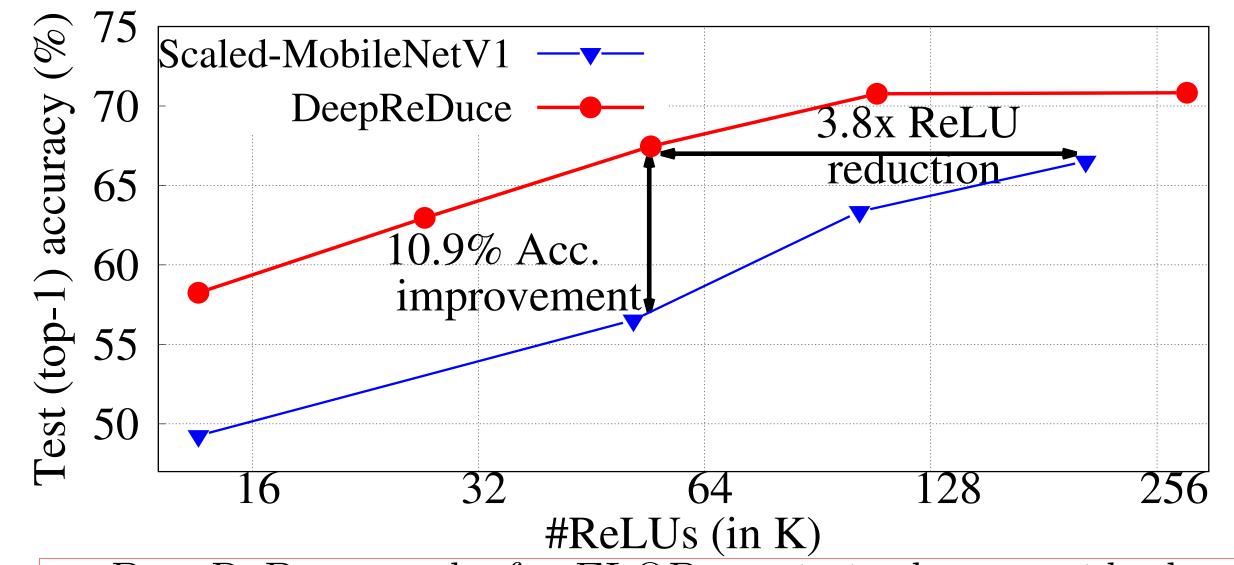
DeepReDuce outputs a Pareto-frontier of ReLU optimized networks with different ReLU counts and accuracy.

DeepReDuce Optimizations Evaluation



#ReLUs (in K) $3.5 \times \text{ReLU}$ saving (at iso-accuracy) and 3.5% accuracy improvement (at iso-ReLU count) on CIFAR-100

□ Generality case study with MobileNetV1 on CIFAR-100



DeepReDuce works for FLOPs-optimized non-residual

network. Hence, DeepReDuce generalize beyond ResNet Comparison with state-of-the-art channel pruning method

	Method	Baseline $Acc.(\%)$	Pruned Acc. $(\%)$	Acc. $\downarrow(\%)$	FLOPs	ReLUs
10 - 10	Ch. pruning [3]	93.59	93.34	-0.25	59.1M	311.7K
	DeepReDuce	93.48	94.07	+0.59	87.7M	221.2K
	DeepheDuce		93.16	-0.32	$66.5 \mathrm{M}$	147.5K
00	Ch. pruning [3]	71.41	70.83	-0.58	60.8M	311.7K
	DeepReDuce	70.93	73.66	+2.57	87.7M	221.2K
	DeepheDuce		71.68	+0.59	$66.5\mathrm{M}$	147.5K

 $2 \times$ more ReLU saving with similar FLOPs and accuracy on CIFAR-10 (C10) and CIFAR-100 (C100).

- Information Processing Systems, 2020.

Comparison with state-of-the-art in private inference

References

[1] Z. Ghodsi *et al.*, "CryptoNAS: Private inference on a relu budget," *Neural*

[2] Q. Lou *et al.*, "SAFENet: A secure, accurate and fast neural network inference," in International Conference on Learning Representations, 2021.

[3] Y. He *et al.*, "Learning filter pruning criteria for deep convolutional neural networks acceleration," in CVPR, 2020, pp. 2009–2018.

Contact

nj2049 [at] nyu [dot] edu