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Introduction

□Machine learning as a service (MLaaS) gives raise to privacy concerns:
▶Client’s input is private and server’s model is proprietary

□Private inference (PI) allows the inference computation while
protecting the input and model privacy

□PI is based on cryptographic techniques and incurs substantial
slowdown

Private Inference

□PI frameworks (e.g., Gazelle [1], Delphi [2]) use different protocols for
linear and non-linear layers

□Each layer’s values are secret shared between the client and the server
□ReLU operations dominate latency in private domain

PI online runtime for non-linear
(ReLU) and linear layers on C10
dataset based on Delphi protocol
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Circa

□ReLUs are implemented using Garbled Circuits (GC) with a size of
17.2KB per ReLU (5GB per ResNet32 inference)
▶ Stochastic ReLUs
□Refactoring ReLUs
▶Refactor ReLU(x) as x.sign(x) and implement multiplication with Beaver

multiplication triples and sign with GCs
□Stochastic Sign
▶Reduce GC cost by omitting expensive modulo operation and using only a

comparator and a MUX
▶ Stochastic Sign incurs a fault rate of P = |x|

p (proof in paper)
□Truncated Stochastic Sign
▶The comparison inside GC can be performed over truncated by k-bit inputs
▶Additional fault rate over small values P = 2k−|x|

2k ∀x ∈ [0, 2k) (proof in paper)

Histogram of ResNet18 activations and
fault probability at first layer
□Small positive activations incur a high

fault probability
□Outside this range the prob is small

and grows linearly with abs value

Circa Evaluation

□Circa truncates 17-19 bits with < 1% accuracy loss at fault rate < 10%

Circa works in two
modes of operation:
□Zero out small positive

vals (PosZero)
□Pass through small

negative vals (NegPass)

ResNet18 on TinyImageNet
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Network-Dataset Baseline
Acc (%)

Circa
Acc (%)

Baseline
Runtime

Circa
Runtime

Runtime
Speedup

ResNet18-C100 74.24 73.76 11.05 4.15 2.7×
VGG16-C100 73.94 73.25 5.89 2.25 2.6×
ResNet18-Tiny 61.60 60.65 44.55 14.28 3.1×
VGG16-Tiny 50.85 50.73 21.41 6.96 3.1×

□Circa can be applied over any
pre-trained network without the
need to retrain

□Three optimizations from Circa
build on top of each other to
reduce GC size and PI runtime ReLU
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