Introduction

Machine learning as a service (MLaaS) gives raise to privacy concerns:
» Client’s input is private and server’s model is proprietary
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Private inference (PI) allows the inference computation while

protecting the input and model privacy

PI is based on cryptographic techniques and incurs substantial

slowdown

Private Inference

PI frameworks (e.g., Gazelle |1, Delphi |2]) use different protocols for
linear and non-linear layers

Fach layer’s values are secret shared between the client and the server

ReLLU operations dominate latency in private domain
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Circa: Stochastic ReLUs for Private Deep Learning
NYU /ahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, Siddharth Garg

Circa

ReL.Us are implemented using Garbled Circuits (GC) with a size of

17.2KB per ReLLU (5GB per ResNet32 inference)
» Stochastic ReLUs

Retactoring ReLLUs

» Refactor ReLU(x) as z.sign(zx) and implement multiplication with Beaver
multiplication triples and sign with GCs

Stochastic Sign

» Reduce GC cost by omitting expensive modulo operation and using only a
comparator and a MUX

» Stochastic Sign incurs a fault rate of P = % (proof in paper)

Truncated Stochastic Sign

» The comparison inside GC can be performed over truncated by k-bit inputs

;,Jx’ Va € [0,2%) (proof in paper)

» Additional fault rate over small values P = 2
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Circa Evaluation

Circa truncates 17-19 bits with < 1% accuracy loss at fault rate < 10%
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Network-Dataset Baseline Circa Baseline Circa Runtime
Acc (%) Acc (%) Runtime Runtime Speedup

ResNet1&8-C100  74.24  73.76 11.05 4.15 2.1
VGG16-C100 73.94  73.25 5.89 2.25 2.6X

ResNet18-Tiny  61.60  60.65  44.55 14.28 3.1%
VGG16-Tiny b0.85  50.73 2141 6.96 3.1%
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