
Circa: Stochastic ReLUs for Private Deep Learning
Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, Siddharth Garg

Introduction

□Machine learning as a service (MLaaS) gives raise to privacy concerns:
▶Client’s input is private and server’s model is proprietary

□Private inference (PI) allows the inference computation while
protecting the input and model privacy

□PI is based on cryptographic techniques and incurs substantial
slowdown

Private Inference

□PI frameworks (e.g., Gazelle [1], Delphi [2]) use different protocols for
linear and non-linear layers

□Each layer’s values are secret shared between the client and the server
□ReLU operations dominate latency in private domain

PI online runtime for non-linear
(ReLU) and linear layers on C10
dataset based on Delphi protocol

R18 R32 VGG160
2
4
6
8

10
12
14

On
lin

e
Ru

nt
im

e
(s

)

98.9%

98.2% 98.7%

1.1%

1.8% 1.3%

ReLU
Linear

Circa

□ReLUs are implemented using Garbled Circuits (GC) with a size of
17.2KB per ReLU (5GB per ResNet32 inference)
▶ Stochastic ReLUs
□Refactoring ReLUs
▶Refactor ReLU(x) as x.sign(x) and implement multiplication with Beaver

multiplication triples and sign with GCs
□Stochastic Sign
▶Reduce GC cost by omitting expensive modulo operation and using only a

comparator and a MUX
▶ Stochastic Sign incurs a fault rate of P = |x|

p (proof in paper)
□Truncated Stochastic Sign
▶The comparison inside GC can be performed over truncated by k-bit inputs
▶Additional fault rate over small values P = 2k−|x|

2k ∀x ∈ [0, 2k) (proof in paper)

Histogram of ResNet18 activations and
fault probability at first layer
□Small positive activations incur a high

fault probability
□Outside this range the prob is small

and grows linearly with abs value

Circa Evaluation

□Circa truncates 17-19 bits with < 1% accuracy loss at fault rate < 10%

Circa works in two
modes of operation:
□Zero out small positive

vals (PosZero)
□Pass through small

negative vals (NegPass)

ResNet18 on TinyImageNet

 0

 10

 20

 30

 40

 50

 60

 70

0 4 8 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

A
cc

u
ra

cy
/F

au
lt

 R
at

e
(%

)

#Truncated-bits

Accuracy (NegPass)

Accuracy (PosZero)

Fault Rate (NegPass)

Fault Rate (PosZero)

Network-Dataset Baseline
Acc (%)

Circa
Acc (%)

Baseline
Runtime

Circa
Runtime

Runtime
Speedup

ResNet18-C100 74.24 73.76 11.05 4.15 2.7×
VGG16-C100 73.94 73.25 5.89 2.25 2.6×
ResNet18-Tiny 61.60 60.65 44.55 14.28 3.1×
VGG16-Tiny 50.85 50.73 21.41 6.96 3.1×

□Circa can be applied over any
pre-trained network without the
need to retrain

□Three optimizations from Circa
build on top of each other to
reduce GC size and PI runtime ReLU

(31 b)
Sign

(31 b)
StSign
(31 b)

StSigntr

(12 b)
Circuit

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

G
C

 S
iz

e
 (

K
B

)
/

R
e
LU

4.7x

1.9x
1.4x

References

[1] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low latency
framework for secure neural network inference,” in USENIX Security, 2018.

[2] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A
cryptographic inference service for neural networks,” in USENIX Security, 2020.

 zghodsi@ucsd.edu � https://ghodsi.me

https://ghodsi.me

