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Abstract—In recent years, researchers have focused on reducing
the model size and number of computations (measured as
“multiply-accumulate” or MAC operations) of DNNs. The energy
consumption of a DNN depends on both the number of MAC
operations and the energy efficiency of each MAC operation.
The former can be estimated at design time, however, the latter
depends on the intricate data reuse patterns and underlying
hardware architecture and hence, estimating it at design time
is challenging. In this work, we show that the naive approach to
estimate the data reuse, viz. arithmetic intensity, does not always
correctly estimate the degree of data reuse in DNNs since it
gives equal importance to all the data types. We propose a novel
model, termed “data type aware weighted arithmetic intensity”
(DI) which accounts for unequal importance of different data
types in DNNs. We evaluate our model on 25 state-of-the-art
DNNs on two GPUs and show that our model accurately models
data-reuse for all possible data reuse patterns, for different types
of convolution and different types of layers. We show that our
model is a better indicator of energy efficiency of DNNs. We also
show its generality using the central limit theorem.
Index Terms—Deep neural networks (DNNs), energy-efficiency,
arithmetic intensity, roofline model.

I. INTRODUCTION

DNNs are now being used in a wide range of cognitive
applications. After the success of AlexNet [1], the research in
DNNs has focused on achieving higher accuracy even at the
cost of DNN size and computational complexity. This has led
to over-parameterized DNNs, e.g., VGG-16 [2], Inception-v4
[3], ResNet152-v2 [4] etc. By contrast, recent networks such
as SqueezeNet [5], MobileNet-V1 [6], and MobileNet-V2 [7]
focus on making the DNN compact by reducing the number
of parameters and/or MACs. However, reducing the number
of MACs does not necessarily make DNNs energy efficient
because energy is dominated by data movement rather than
computation [8]. The data movement primarily depends on
the degree of data reuse present in the workloads.
To enable deployment of DNN models in a wide range of ap-
plications such as autonomous driving, drones, etc., the energy
consumption of DNN inference must be within a prescribed
envelope. Hence, DNNs need to be carefully examined based
on the number of computations (i.e., MACs) as well as the
energy efficiency of MAC operations. Unfortunately, the latter
metric has been largely overlooked in DNN design because a
study of energy efficiency requires precise knowledge of the
degree of data reuse and parallelism present in the DNNs,
and how the underlying hardware platform exploits this par-
allelism. Further, the implications of reducing the number of
parameters and MACs on the energy efficiency of DNN is not
well-understood.

Traditionally, arithmetic intensity [9] is used to model the
degree of data reuse and also used in “roofline model” [10] for
predicting whether a workload is compute-bound or memory-
bound. Therefore, it is a representative of the degree of data
reuse and bandwidth pressure. Lower arithmetic intensity im-
plies a lower degree of data reuse and high bandwidth pressure
and vice versa. The arithmetic intensity considers the memory
footprint and the number of arithmetic operations and shows
the degree of data reuse available in an algorithm. In other
words, arithmetic intensity shows how efficiently arithmetic
operation can reuse the data fetched from different levels in the
memory hierarchy. However, the memory footprint does not
reflect the actual number of off-chip accesses, which largely
depends on the architecture of memory hierarchy and how
well the underlying platform exploits the data reuse available
in the algorithm. Arithmetic intensity can be used to represent
power/energy efficiency only when all the data types have
the same access behavior. For example, [11] and [12] use
arithmetic intensity to model the power/energy efficiency.
DNNs have different types of data such as filter weights,
input and output activations, partial sums, etc. which have
different reuse pattern [13] and hence, reuse importance. Also,
the layers in DNNs have distinct computation and reuse
patterns with different bandwidth requirements. For example,
convolution (Conv) layers have a high degree of reuse, and
they are compute-bound, whereas fully connected (FC) layers
have low-reuse and a high number of parameters and hence,
they are memory bound [14]. Furthermore, due to the different
DNN topologies such as branching, skip connections, dense
connections, etc., the number of concurrent activation varies
during the runtime [15] which in turn affects the reuse behavior
of DNNs. Given these factors, it is interesting to investigate
whether arithmetic intensity can be used as a representative
of energy efficiency in DNN models, or, is there a need for a
more accurate metric.
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Fig. 1: AImedian and AIc are not good indicators of data-reuse

In Figure 1, cumulative arithmetic intensity (AIc) and median
value of layer-wise arithmetic intensity (AImedian) of DNNs
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are shown (these metrics are explained in §III). VGG-16 [2]
and NiN [16] have almost equal AIc but NiN has significantly
higher energy efficiency (measured on both GPU P100 and
P4000) than VGG-16, even when VGG-16 has quite higher
AImedian. Also, AlexNet has quite low AIc and AImedian
than VGG-16 but has very high energy efficiency than VGG-
16. It shows that both layer-wise arithmetic intensity and
cumulative arithmetic intensity are not good indicators of
energy efficiency of DNNs and hence, there is a need for
better model/metric to estimate the data reuse in DNNs to
understand their energy efficiency.
Our main contributions can be summarized as follows.

1) We first explore the intricacies of data reuse patterns in
DNNs (§II) and perform a detailed analysis of layer-
wise data reuse patterns in DNNs (§III). We include
all the possible variations of data reuse patterns arising
from (A) different types of convolutions such as standard,
group, pointwise, depthwise, etc., (B) different types of
layers such as Conv, FC and others, and (C) different
design heuristics such as feed-forward/skip connections.
Through our comprehensive experiment and analysis, we
show that data reuse estimated by arithmetic intensity
is not tightly-coupled with the energy efficiency of MAC
operations in DNNs.

2) We experimentally measure the energy consumption and
energy efficiency of DNNs on two GPUs, P100 and
P4000, and show that activation reuse has a higher
impact on energy efficiency than weight reuse.

3) We propose a novel model to capture the dynamics of
data reuse patterns in DNNs (§IV). Our proposed metric
(DI) more accurately quantifies the intrinsic relationship
between data reuse and energy efficiency of MAC oper-
ations (§IV).

4) We validate our model on 25 state-of-the-art DNNs, in-
cluding both highly-accurate DNNs and compact DNNs,
which have between 221 to 15,470 million weights and
between 0.54 to 138 million MACs (§VI). We also use
“central limit theorem” to prove the generality of our
proposed model (§VII).

II. BACKGROUND AND MOTIVATION

Table I lists the symbols used. For simplicity and ease of
comparison, we assume that a) height and width of filter are
same, b) height and width of output feature map (ofmap) are
same, and c) spatial size of input feature map (ifmap) and
ofmap are equal.
TABLE I: Symbols (Fmap = feature map, Ops = operations)

Quantity (symbol) Unit Quantity (symbol) Unit
Energy per pixel (EPP) Joule Energy efficiency MACs/Joule

# Weights (W ) Millions Throughput MACs/sec
# MACs (Mc) Millions # Activations (A) Millions

Fmap height (So) - Fmap width (So) -
Filter height (Sk) - Filter width (Sk) -

# filter-channels (M ) - # filters (N ) -
Group Size (G) - # Groups (g = M

G
) -

Compute to memory ratio (CMR) OPs/sec/Byte Disparity factor (df ) -
Cumulative arithmetic intensity (AIc) MACs/Byte -

A. Data reuse patterns in DNNs

Types of convolution: Broadly, there are four types of
convolutions. They are discussed below and their properties

are summarized in Table II. Here, weight (learnable filter
coefficients) and activation (ifmaps and ofmaps) reuse are
estimated as Mc/W and Mc/A, respectively. We use arith-
metic intensity defined as Mc

W+A , as a metric to evaluate the
bandwidth requirement of MACs [9].
1. Standard (spatial) convolution: In standard convolution,
filtering (i.e. feature extraction) and combining (i.e. feature
aggregation) are performed together. The total number of
filter weights and activations (combined ifmaps and ofmaps)
involved in standard convolution is M × N × S2

k and (M +
N)×S2

o , respectively. The total number of MAC operations in
standard convolution is M×N×S2

k×S2
o . Because of combined

feature extraction and aggregation, standard convolution incurs
high computational complexity.
2. Pointwise convolution: In pointwise convolution, the
smaller receptive size of filter reduces the number of MACs
as well as number of filter weights involved, which are
M ×N ×S2

o and M ×N , respectively. Number of activations
is same as that in standard convolution. Pointwise convolution
has been used in NiN [16], in inception module [3], [17], [18]
and in SqueezeNet [5].
3. Group convolution: In group convolution, each group of 2-
D filters are convolved with G number of input feature maps.
Compared to standard convolution, in group convolution, the
number of MACs and number of filter weights are reduced by
a factor of G. The number of activations remains same as that
in standard convolution. Group convolution has been used in
AlexNet [1] (g = 2), ResNext (g = 32) [19] and 1.0-G-SqNxt-
23 (g = 2) [20].
4. Depthwise convolution: Depthwise convolution performs
only feature extraction where, one filter convolves with only
one input feature map, i.e., one channel of input. Compared
to standard convolution, it reduces the number of MACs and
number of weights by a factor of N (Table II). Total number of
activations involved in depthwise convolution is 2×M × S2

o .
Depthwise convolution has been used in MobileNet-V1 [6],
MobileNet-V2 [7], and XceptionNet [21]. Note that, depthwise
convolution is an extreme case of group convolution where G
= 1, i.e. g = N = M .
TABLE II: Characteristics of different types of convolution

Convolution Arithmetic intensity Mc
W

Mc
A

Standard M×N×S2
k×S2

o

M×N×S2
k
+(M+N)×S2

o
S2
o

(
M×N
M+N

)
× S2

k

Pointwise M×N×S2
o

M×N+(M+N)×S2
o

S2
o

(
M×N
M+N

)
Group M×N×S2

k×S2
o

M×N×S2
k
+g×(M+N)×S2

o
S2
o

(
M×N
M+N

)
× S2

k
g

Depthwise M×S2
k×S2

o

M×S2
k
+(M+M)×S2

o
S2
o

(
M

M+M

)
× S2

k

Others layers: The non-Conv layers such as pooling, ReLU,
BatchNorm etc. have negligible number of learnable param-
eters and there is no MAC operation involved, although
there are other operations such as element-wise addition,
comparison, division etc. These layers have low arithmetic
intensity and high bandwidth requirement [14]. FC layers
have very high number of parameters (weights), and fewer
activations, which makes FC layers memory bound. In other
words, both the arithmetic intensity and weight reuse in FC
layer is approximately equal to 1 (as Mc ≈W and A�W ).
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(b) Layer-wise arithmetic intensity in DNNs with low data reuse
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Fig. 2: Layer-wise (Conv and FC) arithmetic intensity in (a) DNNs with high data reuse and (b) DNNs with low data reuse.

B. Motivation

Different types of convolutions have been applied to ac-
complish different design goals and to achieve a trade-off
between performance and computation/bandwidth overhead.
Apart from this, various design heuristics have been used, such
as residual connections [4], [22] to facilitate backpropagation
in deeper networks, dense connections [23] to enable feature
reuse, etc. These design heuristics lead to different computa-
tional complexity and degrees of data reuse. Even in standard
convolution, degree of data reuse depends on multiple factors
such as filter’s dimensions, convolution stride, dimensions of
ifmaps, etc. For the comparison of data reuse and computa-
tional complexity in different types of convolution, we assume
specific values of variables and show the values of metrics
normalized to that for standard convolution in Table III.
TABLE III: Metrics values normalized to standard convolution
(assuming N = M = 256, feature map size (So×So) = 28×28,
filter size (Sk × Sk) = 3× 3 and group size (g) = 4)

Convolution Arithmetic intensity Mc
Mc
W

Mc
A

Standard 1.00 1.000 1 1.000
Pointwise 0.24 0.111 1 0.111

Group 0.45 0.250 1 0.250
Depthwise 0.01 0.004 1 0.004

Evidently, the relative number of MACs decreases from stan-
dard convolution to depthwise convolution but the arithmetic
intensity also reduces which would lead to high bandwidth
requirement. Since energy is dominated by data movement
rather than computation [8], a decrease in number of MACs
can be dwarfed by the increase in memory accesses and
hence, the overall energy consumption can be increased. These
observations motivate us to investigate a model which can
better incorporate the dynamics of data reuse in DNNs and is
a better indicator of the energy efficiency of MACs in DNNs.

C. Experimental setup and metrics

We perform our experiments using Caffe [24] on two GPUs,
viz., Tesla P100 [25] and Quadro P4000 [26] which have
significantly different compute and memory resources, as
shown in Table IV. Former is a data-center scale GPU while
latter is a desktop GPU.

TABLE IV: Parameters of GPU used in our experiments

GPU # core L2 size Peak bandwidth Peak Throughput CMR

P4000 1792 2 MB 243 GB/s 5.2 TFLOPS 21.4 FLOPs/Byte

P100 3584 4 MB 549 GB/s 9.3 TFLOPS 16.94 FLOPs/Byte

We use input batch size of four for better utilization of GPU
compute resources. The inference time is averaged over 50
iterations and for power measurements, we use nvidia-smi
utility. “Energy per pixel (EPP)” (Eq. 1) measures the en-
ergy consumed in processing of one input pixel over entire
DNN, whereas “energy efficiency” (Eq. 2) shows the energy
consumed in one MAC operation. We have used EPP to
remove the bias due to differences in input image size used
by different DNNs. For example, InceptionV3, InceptionV4,
and XceptionNet work with input image size 299×299 while
most of DNNs work with input size 224× 224.

EPP =
(Average power)× (inference time)

#Pixels in input frame
(1)

Energy Efficiency =
(batch size)× (# MACs)

(Average power)× (inference time)
(2)

III. NAIVE APPROACHES

We now discuss two possible approaches for estimating the
data reuse in DNNs and also show their limitations. These
approaches are (1) layer-wise arithmetic intensity (§III-A) and
(2) cumulative arithmetic intensity (AIc) (§III-B).

A. Layer-wise arithmetic intensity

Figure 2 shows arithmetic intensity of a layer (Conv and FC)
defined as the ratio of “number of MACs performed in that
layer” to “the sum of total number of weights and activations
in that layer”. We divide DNNs in two categories based on
their degree of data reuse: those with higher data reuse, e.g.,
AlexNet, VGG-16, NiN, and SqueezeNetV1.0 (Figure 2(a))
and those with lower data reuse, e.g., MobileNet-V1 and
MobileNet-V2 (Figure 2(b)). From Figure 2(a), we observe
that arithmetic intensity of nearly all layers of VGG-16 and
NiN are higher and lower (respectively) than that of other
DNNs. Similarly, from Figure 2(b), the arithmetic intensity of
layers in MobileNet-V2 is either comparable or higher than
that of the layers in MobileNet-V1.
Table V shows the median and variance of the arithmetic
intensity of layers in these DNNs. The median value of layer-
wise arithmetic intensity in VGG-16 is significantly higher
than the median value of layer-wise arithmetic intensity in
other DNNs with higher data reuse. Also, NiN has the lowest
median among the DNNs with higher data reuse. Intuitively,
the energy efficiency of VGG-16 should be higher compared to
other DNNs with high data reuse and also the energy efficiency
of NiN should be lowest in the same group. Surprisingly, on
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both P4000 and P100 GPUs, the energy efficiency of NiN is
highest, and that of the VGG-16 is lowest among the DNNs
with higher data reuse.
TABLE V: Median and variance of layer-wise arithmetic
intensity in DNNs (SqNet=SqueezeNetV1.0)

Metric AlexNet VGG-16 NiN SqNet MobileNet-V1 MobileNet-V2
Median 154 560 117 134 18 32

Variance 2.69E+04 2.09E+05 2.24E+04 8.30E+03 3.70E+03 4.52E+03

Similarly, MobileNet-V2 has lower energy efficiency than
MobileNet-V1, which is counter-intuitive. By observing the
variance of the layer-wise arithmetic intensity of DNNs in
Table V, one may argue that since the variance values of
VGG-16 and MobileNet-V2 are higher than the other DNNs in
their respective groups, hence their energy efficiency is lowest,
despite having higher median. This argument is flawed because
it is unable to explain why NiN has higher energy efficiency
than SqueezeNetV1.0 even when NiN has significantly higher
variance than SqueezeNetV1.0. Above discussion proves that
“layer-wise arithmetic intensity” is not a good indicator of
energy efficiency of DNNs with both high and low data reuse.
Besides this, finding layer-wise arithmetic intensity in DNNs
such as Inception-V3, Inception-V4, Inception-resnet-v2, etc.
is tedious work because these networks have thousands of
Conv layers and many layers have several branches leading
to irregular computation and reuse patterns.

B. Cumulative arithmetic intensity
For each DNN, a single metric, viz., arithmetic intensity
(AIc = Mc

W+A ) is defined as the ratio of “total number of
MAC operations performed by network in one forward pass”
to “the sum of total number of weights and activations that
network has”. We have plotted the roofline models with AIc
for 25 DNNs (Table VIII) on two GPUs P4000 (Figure 3(a))
and P100 (Figure 3(b)). We also measure the energy efficiency
of 25 DNNs on P4000 and P100 and plot in Figures 3(e) and
3(f), respectively.
In the roofline models (with AIc) on both GPUs (Figure
3(a) and (b)), MobileNet-V1, DenseNet and XceptionNet are
predicted as compute-bound whereas AlexNet is predicted as
bandwidth-bound. It is well known that due to the costlier
off-chip accesses, bandwidth-bound operations are energy in-
efficient compared to compute-bound operations. Despite this,
AlexNet has substantially higher energy efficiency compared
to that of the MobileNet-V1, DenseNet, and XceptionNet (as
measured on both P4000 and P100 GPUs). From Figure 3(e)
and 3(f), it is evident that MobileNet-V1 has very low energy
efficiency while AlexNet has very high energy efficiency. Also,
XceptionNet and DenseNet are predicted as compute-bound,
but their energy efficiency is lower than that of the AlexNet. In
summary, data reuse predicted by AIc is not correlated with
the energy efficiency of DNNs.
To understand the reason behind limitations of AIc, we study
the architecture of XceptionNet and DenseNet. We found
that DenseNet has many feed-forward/skip connections which
increases the number of concurrent activations [15] and de-
creases the effective data reuse. Similarly, XceptionNet uses
depthwise separable convolution (DWSconv) which has very
low data reuse (Table III). It also has skip connections which

increase the concurrent activation data and further reduce the
data reuse. AIc

( Mc/W
1+A/W = Mc/A

1+W/A

)
gives equal importance to

weight reuse (Mc/W ) and activation reuse (Mc/A) and hence,
it is unable to capture the runtime change in data reuse.

IV. PROPOSED MODEL

In this section, we first discuss the need of giving unequal
importance to reuse of different data types, specifically weights
and activations (§IV-A). Then, we propose our model, which
more accurately incorporates the dynamics of data reuse
in DNNs (§IV-B). We highlight the effectiveness of our
model (§IV-C) and compare it with AIc to get more insights
and explain why AIc fails to predict the nature (memory-
bound/compute-bound) of some DNNs (§IV-D).

A. Reuse of different data types has unequal importance

As we know, the number of weights (W ) in a DNN does
not change at runtime. However, the number of concurrent
activations can change at run time and grows in proportion
to the number of feed-forward connections (as discussed in
§III-B). DNNs such as DenseNet have a relatively higher
number of skip connections, which leads to a substantial
increase in concurrent activations. Further, as shown in Table
VIII, the ratio of the total number of activations to total number
of weights, i.e., A

W varies significantly across different DNNs,
ranging from 0.03 in AlexNet to 32.80 in 1.0-G-SqNxt. This
imbalance between W and A creates an imbalance between
Mc

W and Mc

A , for example, compact DNNs such as MobileNet
and SqueezeNext have very low Mc

A (Table VIII). To account
for the imbalance between the weight and activation reuse and
also to model the runtime change in effective data reuse, our
model decouples the weight and activation reuse.
Does the decoupling of weight and activation reuse inherits
the properties of arithmetic intensity? As shown in Table II,
the arithmetic intensity of commonly used convolution types
are different. On decoupling the data reuse in terms of weight
and activation reuse, we find that in all convolution types, the
weight reuse is the same (i.e., S2

o ) whereas activation reuse
is different. This is quite interesting because it shows that the
variation in arithmetic intensity for different convolution types
are governed by the variation in activation reuse. Since lower
arithmetic intensity leads to higher bandwidth pressure, lower
activation reuse leads to a higher number of memory accesses,
which can make DNN energy inefficient. Based on these
insights, activation reuse should be given more importance
than weight reuse while modeling the importance of weight
and activation reuse. As shown in Table III, the activation reuse
decreases from standard convolution to depthwise convolution
in the same order in which the relative value of arithmetic
intensity is decreasing (but with different magnitudes). This
confirms that decoupling the data reuse in weight and activa-
tion reuse inherits the properties of arithmetic intensity.

B. Decoupling the weight and activation reuse

We now decouple weight, and activation reuse from the
formulation of AIc and establish a relation between arithmetic
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Fig. 3: Roofline model with (a) AIc and (c) DI , and (e) energy efficiency on P4000. (b), (d), (f): these results on P100.

intensity (AIc) and weight and activation reuse. Since arith-
metic mean is never less than harmonic mean, we have

W +A

2
>

2×W ×A
W +A

=⇒ 2×Mc

W +A
6
Mc × (W +A)

2×W ×A

=⇒ Mc

W +A
6

1

4
×

[
Mc

A
+
Mc

W

]

=⇒ AIc 6
1

4
× [ActivationReuse + WeightReuse] (3)

To give unequal importance, we introduce a data reuse coef-
ficient (α) in Eq. 3, where 0 ≤ α ≤ 1. Different values of α
would give different weightage to both types of reuse. After
introducing α in Eq. 3, we refer the resultant metric as “data
type aware weighted arithmetic intensity” (DI).

DI =
1

4
× [α× ActivationReuse + (1− α)×WeightReuse] (4)

To find the value of α such that DI would become a more
accurate indicator of energy efficiency, we find the Pearson
correlation coefficient (r) between DI and energy efficiency
for α values between 0 to 1 with a step size of 0.05. We

experimentally measure the energy efficiency of 25 state-of-
the-art DNNs. As we know, a value of r close to +1/-1
indicates stronger positive/negative (respectively) correlation
and a value close to 0 indicates no correlation. Figure 4 shows
the results, and we observe that, on both GPUs, with increasing
value of α, the correlation continues to increase till it reaches
a plateau at α ≈ 0.80. The increase in r with higher value of α
is consistent on both GPUs, which have significantly different
compute power and CMR (Table IV). Thus, these results are
not platform-dependent rather platform-agnostic. Hence, we
take α = 0.80 and substituting this value in Eq. 4 gives the
final expression for DI . We do not take value of α greater
than 0.80 because correlation starts saturating at α = 0.80
and α > 0.80 renders the population correlation coefficient
(ρ) outside the confidence window (as explained in §VII).

In Table VI, we compare our model (DI with α = 0.80) with
AIc using correlation coefficient. Evidently, compared to AIc,
DI has a much stronger correlation with energy efficiency
as measured for 25 DNNs on both P4000 and P100 GPU.
Hence, DI is a better indicator of energy efficiency of DNNs.
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Fig. 4: Correlation (for different values of α) between DI and
energy efficiency on P4000 and P100 GPU.

From Table II, we concluded that its the activation reuse which
causes variation in arithmetic intensity, not the weight reuse.
In our model, we obtained α = 0.80, which indicates that
activation reuse has a much higher impact on DI than weight
reuse. Evidently, our model confirms the intuition (§IV-A) and
highlights the importance of activation reuse.
TABLE VI: Correlation of AIc and DI with energy efficiency
of 25 DNNs measured on P4000 and P100 GPUs

GPU X Y r = correlation (X ,Y )

P4000 AIc Energy efficiency 0.52
DI (Ours) Energy efficiency 0.83

P100 AIc Energy efficiency 0.23
DI(Ours) Energy efficiency 0.64

C. Salient features of our model

We first discuss how modeling of activation and weight reuse
captures all types of reuses across different layers in DNNs.
Based on the computation and data reuse patterns, layers in
DNNs can be broadly categorized as Conv, non-Conv, and FC
layers. In Conv layers, there is feature map reuse, filter reuse,
and filter weight reuse [13], whereas in FC layers, except filter-
weight reuse, all these types of reuses are possible. In other
words, all the possible data reuse in both Conv and FC layer
can be expressed as weight and activation reuse. However,
in non-Conv layers, only ifmap and ofmap activations are
processed, and their reuse can be described as activation reuse.
As shown in Table II, the degree of data reuse in different types
of convolutions is different due to the activation reuse, whereas
weight reuse remains constant across all types of convolutions.
This implies that, energy efficiency of MAC operations across
different type of convolutions can be expressed in terms of
activation reuse. Since, non-Conv layers do not have learn-able
parameters and process only feature maps, their energy metrics
are governed by activation reuse. However, in FC layers, Mc ≈
W and A � W , thus, arithmetic intensity and weight reuse

are approximately equal to 1, and hence, the energy efficiency
of MACs in FC layers are governed by weight reuse.
In summary, except FC layer, the energy efficiency of all the
layers can be expressed in terms of activation reuse, and the
higher value of α implies higher importance of activation
reuse. This shows that FC layers have lower impact on the
energy efficiency of DNNs. In fact, deeper networks such as
Inception-V4, Inception-ResNet-V2 have hundreds of Conv
and non-Conv layers, but very few FC layers and some
networks such as NiN have no FC layers at all.
We now discuss how our model addresses the shortcomings
of AIc. As discussed in §III-B, AIc predicts AlexNet as
memory-bound and MobileNet-V1 as compute-bound (shown
in roofline models in Figure 3(a) and 3(b)) but the energy-
efficiency of AlexNet is quite high and that of the MobileNet-
V1 is quite low (Figure 3(e) and 3(f)). This is counter-intuitive
because operations (MACs) of memory-bound workload are
energy-inefficient due to the higher number of memory-
accesses. The reason for these irregularities are better ex-
plained by our model. As shown in Table VIII, AlexNet has
very low Mc

W but significantly high Mc

A , whereas MobileNet-
V1 has high Mc

W but significantly low Mc

A . By virtue of giving
higher importance to Mc

A , our model is able to accurately
predict AlexNet as compute-bound and MobileNet-V1 as
memory-bound (Figure 3 (c) and (d))

D. When and why does AIc fails?
We define relative disparity (df ) between AIc and DI as
follows.

df =

(
AIc −DI
AIc

)
×100 = 75−6.25×

[
A

W
+3×W

A

]
(5)

Above Equation (Eq. 5) shows that, A
W has less impact on

relative disparity (df ) than W
A . Since, A

W is same as weight
reuse to activation reuse ratio, Eq. 5 implies that weight reuse
has less impact on (df ). Table VIII shows weight reuse (Mc

W ),
activation reuse (Mc

A ), AIc and DI , activation to parameter
ratio ( AW ) and df value for 25 state-of-the-art DNNs. For
gaining more insights, we study three cases which are shown
in Table VII.

TABLE VII: AIc, DI and df for 3 cases

Case 1: A � W Case 2: A ≈ W Case 3: A � W
AIc ≈ Mc/W ≈ 0.5 ×Mc/A ≈ Mc/A
DI ≈ 0.2 ×Mc/A ≈ 0.25 ×Mc/A ≈ 0.06 ×Mc/W
df ≈ 75 − 18.75 × W

A
≈ 50 ≈ 75 − 6.25 × A

W

As shown in Table VII, in case 1, activation reuse (Mc

A )
dominates total data reuse (Mc

W + Mc

A ), but AIc is nearly equal
to weight reuse (Mc

W ). This leads to huge disparity between AIc
and DI . For example, AlexNet has 30× higher activation reuse
than weight reuse and hence, its relative disparity is highest
among all the 25 DNNs (Table VIII). In case 3, weight reuse
dominates the total data reuse, however, disparity is noticeable
but not as large as in case 1 because weight reuse has less
impact compared to activation reuse (refer Eq. 4). In case 2,
the df is lower and AIc would be able captures the dynamics
of data reuse in DNNs. In summary, when either A ≈ W ,
for example in variants of InceptionNet, ResNet and ResNext
(Table VIII), or when A is significantly higher than W , for
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example MobileNet-V2 and variants of SqueezeNext (Table
VIII), AIc would be able to capture the data reuse patterns in
DNNs. However, AIc fails to estimate the data reuse when the
A
W ratio is very low (e.g., AlexNet) and also, when A

W ratio
is moderately high (e.g., MobileNet-V1).
TABLE VIII: Reuse, AIc, A

W , DI , and df for various DNNs

Model Name Mc
W

Mc
A

AIc DI A
W

df
AlexNet [1] 12 362 11 73 0.03 -564
VGG-16 [2] 112 537 93 113 0.21 -22

NiN [16] 146 291 97 66 0.50 32
GoogLeNet [17] 227 158 93 43 1.44 54

Inception-V2 [18] 196 122 75 34 1.61 55
Inception-V3 [18] 240 138 88 40 1.74 55
Inception-V4 [3] 287 169 106 48 1.70 55
ResNet-50 [22] 151 83 54 24 1.83 56

ResNet-101 [22] 170 108 66 30 1.58 55
ResNet-152 [22] 188 113 70 32 1.66 54

ResNet101-V2 [4] 176 112 68 31 1.56 54
ResNet152-V2 [4] 192 116 72 33 1.65 54

Inception-ResNet-V2 [3] 236 139 87 40 1.70 54
ResNext50-32x4d [19] 191 72 52 24 2.67 54
ResNext101-32x4d [19] 206 89 62 28 2.31 55

DenseNet-121 [23] 386 44 40 28 8.77 30
DenseNet-169 [23] 263 43 37 22 6.10 41

SqueezeNet-V1.0 [5] 678 69 63 48 9.84 24
SqueezeNet-V1.1 [5] 282 48 41 24 5.81 41

1.0-SqNxt-23 [20] 381 15 15 22 24.84 -47
1.0-SqNxt-23v5 [20] 242 16 15 15 15.12 0
1.0-G-SqNxt-23 [20] 406 12 12 23 32.80 -92

MobileNet-V1 [6] 136 28 23 12 4.80 48
MobileNet-V2 [7] 125 12 11 9 10.10 18
XceptionNet [21] 367 85 69 35 4.32 49

V. APPLICABILITY OF PROPOSED MODEL

Our model estimates the data reuse available in DNNs with
the assumption that underlying platforms have sufficient com-
pute/memory resources to exploit the available data reuse in
DNNs. However, different hardware platforms are optimized
for contrasting design goals and have dissimilar memory-
hierarchy with non-identical number of layers and capacity.
We now discuss whether our model is applicable to hardware
platforms such as CPU, FPGA, etc., or do we need to re-
calibrate the value of α on them?
GPU: Both P100 and P4000 GPUs have substantially different
memory and compute capability, which is also manifested by
different CMR values (Table IV), and hence the memory-
access pattern and their cost would vary significantly for both
the GPU. In Figure 5(a), it is shown that EPP values of DNNs
are higher on P4000 GPU compared to that on P100 GPU. Our
extensive experiments validate the proposed model, and hence
does not require re-calibration of α for both the GPUs, even
though they have different compute and memory resources.
This indicates applicability of our model to different GPUs
regardless of their memory-hierarchy and CMR values.
CPU: CPUs have different memory hierarchy and memory
management techniques to optimize the single thread perfor-
mance. Specifically, the hardware managed cache hierarchy
with other optimization techniques such as cache miss man-
agement and cache coherence protocol largely vary among
different CPU architectures. Also, unlike the GPUs, CPUs
have higher off-chip memory, which can accommodate a
larger model with larger batch size. Furthermore, unlike GPUs,
which have a large number of cuda-cores (Table IV), CPUs
have limited parallelism in the compute unit. Thus, to include

these dynamics in our proposed model, α may need to be re-
calibrated. However, decoupling weight and activation reuse
would still be useful.
FPGA: Unlike CPUs and GPUs, FPGAs have limited on-
chip/off-chip memory resource along with limited compute
power, which may be insufficient to exploit the available data
reuse in large models. Moreover, these platforms are optimized
for some specific application, and hence their memory archi-
tecture and memory management techniques do not vary as
much as in general purpose computing engines. We believe
that, for such platforms, the energy efficiency of MACs may
be different compared to that of in general purpose hardware
platforms, however, the correlation between DI and energy
efficiency would remain intact. Hence, we do not need to re-
calibrate the α.
Effect of memory hierarchy: We discuss two extreme cases.
The processor has 1) negligible on-chip memory and all data-
items (weights and activations) are stored off-chip and 2)
sufficiently large on-chip memory and no off-chip accesses
are required.
Case 1: Since all operands have to be fetched from off-chip
memory, and there is no data reuse possible. The energy-
efficiency depends on the memory-footprint, and hence, a
DNN with larger memory-footprint would consume more
energy as compared to a DNN with smaller memory-footprint.
For example, despite having very low data reuse, compact
DNNs such as MobileNet-V1 and MobileNet-V2 would be
more energy efficient than AlexNet which has better data
reuse (Table VIII). Note that the fragmented memory-accesses
in DWConv may affect the row-buffer hit counts in DRAM,
however, the energy savings through row-buffer hits would be
negligible as compared to the cost of off-chip accesses [27].
Thus, the impact of data reuse in DNNs will be very small on
energy-efficiency.
Case 2: DNNs with high data reuse will have more accesses
to the on-chip memory closer to compute engine and DNNs
with low data reuse will have more accesses to the on-
chip memory farther from the compute engine. Since, the
data movements from smaller and closer (to compute engine)
memory consumes less energy than that from larger and farther
memory [8], [28], the energy efficiency of MACs in DNNs
with higher data reuse will be higher than that in DNNs with
low data reuse. In effect, the relative difference between the
energy efficiency of MACs with higher and lower data reuse
would remain unchanged from that discussed in our model.
Hence, the correlation between α and energy efficiency would
not be altered, and our model would be useful in this case.
There are other corner cases for which the α may need to
be re-calibrated. For example, when on-chip memory is very
limited but able to accommodate the compact DNNs such as
MobileNets, then despite of having poor data reuse behavior of
DWConv, MobileNets will get benefits from cheaper on-chip
accesses.

VI. THE IMPLICATION OF DESIGN HEURISTICS ON ENERGY
EFFICIENCY OF DNNS

Figure 5(a) shows EPP and MAC operations, whereas Figure
5(b) shows energy efficiency of DNNs. EPP and energy
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Fig. 5: (a) EPP and MACs (b) energy efficiency of 25 DNNs measured on P4000 and P100 GPUs (SqNxt=SqueezeNext)

efficiency values are measured experimentally on P4000 and
P100 GPUs. As shown in Figure 5(a), EPP of XceptionNet,
MobileNet-V1, and MobileNet-V2 is much higher than the
EPP of their neighboring DNNs with higher MACs since
energy efficiency of these DNNs are much lower (Figure 5(b)).
These DNNs employed DWConv to reduce the Mc, however,
due to very low data reuse in DWConv it increases the band-
width pressure and reduces the energy efficiency. Similarly, the
feed-forward connections in exacerbate the low activation re-
usability in XceptionNet and MobileNet-V2. Thus, the former
has highest EPP and the latter has lowest energy-efficiency
among 25 DNNs (Figure 5)

VII. GENERALITY OF OUR MODEL

For generality test, we use confidence intervals for the pop-
ulation correlation coefficient (ρ), which measure the linear
correlation between two variables over entire population.
Whereas sample correlation coefficient (r) is a measure of the
correlation between the two variables over a sample (φ) taken
randomly from the population. We perform the following steps
to compute the confidence intervals for given r and φ.
Step 1: “Central limit theorem” can be applied when the
data follow normal distribution or the sample size is large.
In our experiment, φ is 25 which is large enough (refer
Eq. 6) to apply “central limit theorem”. To get normal dis-
tribution, we transform r using “Fisher’s Z transform” as
Zr = 1

2 × loge
(
1+r
1−r
)

[29]. Then, we calculate standard error
(Se) which is approximated as 1√

φ−3 [29].
Step 2: For 95% confidence, the upper limit (Ur) and lower
limit (Lr) of confidence intervals are Ur = Zr + (1.96× Se)
and Lr = Zr − (1.96 × Se) respectively. Similarly, for 99%
confidence, Ur = Zr + (2.58 × Se) and Lr = Zr − (2.58 ×
Se) respectively [29]. Note that these confidence intervals are
corresponding to Zr.
Step 3: We compute inverse Fisher transform [29] to calculate
the upper (U ) and lower (L) limit of confidence intervals
corresponding to r, which are U = e2×Ur−1

e2×Ur+1
and L = e2×Lr−1

e2×Lr+1
.

Observations: Table IX shows the confidence interval for
both 95% and 99% confidence. For better approximation of

TABLE IX: Confidence intervals for ρ.
95% confidence 99% confidence

GPU Metric L U ∆ L U ∆

P4000 AIc 0.16 0.76 0.60 0.03 0.81 0.78
DI (Ours) 0.65 0.92 0.27 0.57 0.94 0.37

P100 AIc -0.18 0.57 0.75 -0.30 0.66 0.96
DI (Ours) 0.33 0.83 0.50 0.21 0.86 0.65

ρ using r, window size (∆) for confidence interval, should
be as narrow as possible. Smaller window size implies lesser
deviation in ρ and ensures that same correlation would hold
in other population also.
Observation 1: For AIc on P4000 GPU, at 99% confidence,
L=0.03 and ∆=0.78. On P100 GPU, these values are L= -
0.30 and ∆=0.96. This shows that, AIc can have very poor
correlation with energy efficiency in some cases, e.g., for
AlexNet, relative disparity (df ) is very high (Table VIII). By
comparison, with DI at 99% confidence, L=0.57 and ∆=0.37
on P4000 GPU, whereas L=0.21 and ∆=0.65 on P100 GPU.
Thus, it can be said with 99% confidence that ρ lies between
0.57 to 0.94 and between 0.21 to 0.86 on P4000 and P100
GPU, respectively. Clearly, our model exhibits better positive
correlation with energy efficiency in any population of DNNs
on both GPUs.
Observation 2: For DI , the upper limit (U ) at 95% and
99% confidence are well above 0.80. Hence, in the best case,
i.e., when ρ approaches U , DI shows a very strong positive
correlation with energy efficiency. Evidently, our model is
generic and applies to a large range of DNNs. Hence, it can
be used as a DNN design heuristic.
Minimum φ required for generality test: Unlike ∆, window
size corresponding to Zr, i.e. ∆r = Ur - Lr, is independent
of r. We find minimum sample size (φ) such that ∆r 6 1 at
95% confidence.

∆r 6 1 =⇒ 2× 1.96× 1√
φ− 3

6 1 =⇒ φ > 18.37 (6)

Thus, the minimum number of DNNs required for generality
test is 19. We have taken φ as 25 for which ∆r = 0.836.

VIII. CONCLUSION AND FUTURE WORK

We propose a novel model which decouples the weight and
activation reuse and accounts for their unequal importance. We
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show that our model is applicable to a diverse set of DNNs
and is a better representative of energy efficiency in DNNs.
In future work, we will evaluate our model on CPUs, FPGAs,
and other accelerators to show its applicability over a large
range of hardware platforms.
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